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Adjoint High-Order Vectorial Finite Elements for
Nonsymmetric Transversally Anisotropic Waveguides

Volkmar Schulz

Abstract—In this paper, a vector finite-element method (FEM)
for theinvestigation of microwave and optical waveguideswith ar-
bitrary crosssection ispresented. In particular, the FEM solvesthe
vector wave equation in thefrequency domain for waveguides, con-
taining nonsymmetric transversally anisotropic (passive and ac-
tive) materials. Therefore, a bilinear form has been derived that is
solved for theoriginal and adjoint wave equation. Bi-orthogonality,
relationsof original and adjoint solutionsfor simpler materials, the
role of nonphysical solutions for both problems, and their proper
approximations are discussed in detail. Special focus has been set
on shifting the propagation constants of the nonphysical modes for
nonzero frequenciesto infinity. Therefore, an excellent rate of con-
vergence for iterative solversis observed. The occurrence of non-
physical solutionsisshown. Different nth-order basisfunctionsare
systematically derived, which areidentical to the well-known tan-
gential continuousfinite elements. Both algebraic eigenvalue prob-
lems are solved via a generalized L anczos algorithm, which solves
both eigenvalue problems efficiently. The capability of the FEM is
illustrated by critical examples.

Index Terms—Adjoint, anisotropic, bi-orthogonality, finite-
element method (FEM), Lanczos, microstrip, nonphysical, non-
symmetric, optical, spurious, tangential continuous, transversal,
vectorial wave equation, waveguide.

I. INTRODUCTION

HE increasing complexity of microwave and optical com-
T ponents requires accurate numerical toolsto predict wave-
guide parameters qualitatively and quantitatively. Today, many
numerical methods are known, which are able to handle dif-
ferent types of waveguide problems. Especially for microwave
structures, numerical methods haveto be able to handlefields at
sharp edges[1], [2]. For optical components, very accurate pre-
dictions of fields and propagation constants are needed. Since
the optimization of waveguide components increases the com-
plexity of the cross sections and the applied materia systems,
the finite-element method (FEM) represents one of the most
suitable methods for future investigations.

However, solving the vectorial wave equation with numerical
methods often leads to the occurrence of nonphysical or spu-
rious solutions. Unfortunately, first ideas of forcing the field
to be source-free by penalty methods only partialy succeed
[3]. Other authors successfully used formulations only in the
transversal field components[4]. Over the last ten years, several
papers have been published, in which tangential continuous fi-
nite elements (TCFEs) successfully suppressed these nonphys-
ical solutions [5]-8]. An additional advantage of these TCFES
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is the possibility to handle fields at sharp perfect conductive or
dielectric edges [9]. These two features prepare the TCFE for
the analysis of all microstrip-like waveguides.

Most of the TCFE-based FEMs are limited to lossless or
complex, but symmetric transversally anisotropic materials[7],
[10]{12]. In[13], a TCFE-based FEM isderived, whichisable
to handle general lossy anisotropic media by increasing the di-
mension of the algebraic eigenvalue problem. In this paper, a
generaized bilinear form will be derived, which is able to in-
vestigate waveguides with arbitrarily complex (passive or ac-
tive) nonsymmetric transversally anisotropic materials. There-
fore, unlike other authors, the original and adjoint problem is
solved to generate a set of bi-orthogonal functions.

Different high-order TCFEs have been published [7],
[11]15]. Thus, this paper tries to improve the understanding
of the occurrence and the avoidance of nonphysical solutions.
In contrast to other authors [5], [8], [10], [15], [17], the
finite-element (FE) function space of nth order will be directly
derived from the bilinear form itself. It will be shown that, in
case of unsuited basis functions, a nonphysical solution will
pollute the eigenvalue spectrum. A specia focus will be set
to derive a bilinear form, in which al nonphysical solutions
for nonzero frequency appear at infinity. Important relations
between the physical, adjoint, and nonphysical solutionswill be
deduced. The algebraic eigenvalue of the original and adjoint
problem will be obtained by using a generalized Lanczos
algorithm [5] and a sparse LU decomposition [16]. Excellent
rate of convergence is observed, even for calculations at or
close to cutoff frequencies.

II. FORMULATION
A. Governing Equations

We consider apassive or active anisotropic nonsymmetric mi-
crowave or optical waveguide with arbitrary limited cross sec-
tion 2 (seeFig. 1). 9 (= 9p U Iy ) isthe boundary of the
region §2. For the investigation of waveguides, the dependency
of thefield quantities on thetime ¢ and the axial coordinate = is
assumed to be of the following form:

Flx,y,2,t) = F(z, y)ej“’t_a’z. Q)

v = «a + j3 denotes the propagation constant with the atten-
uation « and the phase constant 3. The propagation of electro-
magnetic energy in the z-direction is described by the two linear
independent Maxwell’ s equations

Bo #0: (Vi — 207) x E=— 350 7%0p, H (29)
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Fig. 1. Waveguide with arbitrary cross section.

3
(Vi —zoy) x H Ij/—OETE.
Zo

(2b)

Here, V, = x0(8/0z) + y,(9/dy) isthe transversal Nabla op-
erator and ¢, and p,. are the relative permittivity and perme-
ability tensors with complex entries. xg, y,, and z are the unit
vectors along the z-, y-, and z-axis. By = w,/eopio denotes
the free-space wavenumber, w is the angular frequency, and
Zo = /o/eo is the free-space wave impedance. The scalar
guantities e and g are the permittivity and permeability of
vacuum, respectively. For unique solutions of (2), the following
boundary conditions are assumed:

no XEIO,
no )<}IIO7

on olp
on o y.

(32)
(3b)

Here, ng is the unit vector perpendicular to the boundary 612,
pointing outside the region 2.
All materials are transversally anisotropic quantities, e.g.,

_|#w O _ | M=
Il’r |: 0 sz:| I"’tt |:Nyx

No additional restrictions have been made for the materials so
neither hermitic (i, = p?, e, = €), nor symmetric (i, =
ul, e, =€) materials have been imposed. Waveguides con-
taining transversally anisotropic conductivity o can be investi-
gated via

iz
e

o 5)
wep

Here, ¢, denotes the previous permittivity tensor. Transversaly
anisotropic materials are also known as reflection-symmetric
materials because ++ arevalid propagation constants[20]. Fur-
thermore, from (2a) and (2b), second-order vectorial wave equa-
tions for either the electric or magnetic field can be deduced.
Without any restriction, aformulation based on the electric field
is used

Be B = (Vi —207) x ut [(Ve — z07) X E]. (6)

A formulation in the magnetic field is simply achieved by ex-
changing the quantities E, €,., and p! with H, p,., and 1.
Instead of using -1, the rearranged definition

[um uyr}

Moy, Mo,

N = L 7 Nzz = (7)
Koz yy — HzyHlyy Hozz
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isused to simplify the notation [14]. Thus, the vector wave equa-
tion is separated into a transversal and longitudinal part

Vi X 1.z (Ve X By) — vy, (Vi E. +vEy) =fienE,  (89)
—Vt . th (VtEZ + ’YEt) :ﬁgezzEz-

(8b)

For atypical calculation, the frequency isknown, whereas v2
is the demanded eigenvalue. Thus, it is useful to transform (6)
with

v # 0: uy + zouy: =vE + 20E. 9)

into a linear eigenvalue equation [5] Transversal parts and the
longitudinal component of « are indicated by the subscripts ¢
and z. An application of this transformation leads to a bilinear
eigenvalue problem in v2 and 33

[.A - 328 - ’VQC] u=0. (20
The three matrix operators are given by
A [ Vex s (Ve x 1] 0
L N Vi1,V
s=[a 2]
C= —gtTt "”Ovt} . (11)

Nevertheless, a different transformation can be used [18] as
follows:

v # 0wy + 2ouz: = By 4+ 20vE. (12)
which leadsto a similar bilinear eigenval ue problem
[A = B3B8 —~+°C']w = 0. (13)
2’ isthe solution and the new operators are given by
A = |:Vt X1, [Vt X 1] _thvt
o” \7% "'htvt
B =B
0
o= M . 14
{ -V, 0} (14)

Relations and properties of both sets of operators will be dis-
cussed in Section 11-B. For unique solutions of (10) and (13),
the boundary conditions (3) are transformed via (9) and (12) to
the following equations:

no X u=0, on oQp (150)
Vt X ’U't = 0
on oy 15b
"O'th[m—i-vtuz]:()}’ N ( )
no X w = 0, on dQp (163)
Vixu, =0
no - [Vl + Vo] =0 OO (16D)

Here, 9Q1p and 92y denote the boundaries to perfect electric
conductors (PECs) and perfect magnetic conductors (PMCs).



1088

B. Nonphysical Solution of the Vector Wave Equation

Beforethe application of any numerical method, the nonphys-
ical solutions of the wave (2) and (8) will be indicated. These
solutions exist because the set of (2) isonly completeif 5, # 0
is assumed. The source-freeness of the fields is not necessary
guaranteed for 5y = 0. Consequently, the enlargement of the
solution space has already been done, considering (2) asacom-
plete set of equations.

It is easy to prove that any function F, that satisfies the
boundary condition of Maxwell’ s equations given by

1
/30 = 02 Es = ;Vt(z)s — Zo(z)s (17)
isasolution of the problem with an unspecified source distribu-
tion.

Thus, for the different transformations (9) or (12), two dif-

ferent sets of nonphysical solutionsend up from (17) asfollows:

1. A,B,C
/30 =0: Us = ¢SZO — Vt¢5 1. .A/ B/ C/ (18)
,\/2 . I ? N
Each nonphysical solution is a solution of a linear eigenvalue
problem, e.g.,

Bo = 0: [.A — ’yQC] us; =0 (29
because of
Vt X MNzz [Vt X Vt(z)s] :|
s = =0
Au |:Vt - 'r]ttvtd)s - Vt y nttvtd)s

Cu, = ["htvt(z)s g‘flttvﬂz’s} -0

Even for 3y # 0, there are nonphysical solutionsin the con-
tinuous problem, which depend on the set of matrix operators
being used. These functions are solutions of the inverse eigen-
value problem, e.g.,

[7_2 (A - B2B) — c} us = 0. (20)
For v — oo, the possibility that a nonphysical solution occurs
isrelated to the definiteness of the operator C

Bo#0 ~v— o0 Cus; =0. (21)

In case of the operators (11), the additional nonphysical solu-
tions u, are given by

/30 7& 0 YO0l Uy = Vt(z)s - (z)szO- (22)

Likewise, for the set of operatorsfrom (14), additional nonphys-
ical solutionsu; can be pointed out as follows:

Bo#Z0 ~v— 00 Uy = Py2o. (23

For 3y # 0, both eigenvalue problems have nonphysical so-
lutions at v — oo. It is obvious that no special procedure
is necessary for the numerical solution if we solve the eigen-
value equations at or close to v = 0, [5], [12]. However, the
price paid for are nonsymmetric operators, even for a simple
example of an empty rectangular waveguide. Equation (8b) can
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be shifted to the operator C by multiplication with +2, which
leads to quasi-symmetric matrix operators, e.g., [7], [14]. Asa
result, the new operator .4 become semidefiniteand v = 0 is
an eigenvalue for both problems, which belongs to an infinite
number of nonphysical solutionssimilar to (23). Therefore, con-
vergence problemsof the numerical computation of propagation
constants closeto v = 0 are expected. Thus, numerical methods
based on (10) and (13) are considered to be more promising.

C. Adjoint Operators and Bilinear Form

For the application of Galerkin’s procedure, an inner product
and a function space is defined.

(ufo): = / /Q WTodQ, wve L3 (Q)

UP ={ufuecl, V,xVixu €Ly, V-V, €Ly}
(25)

(24)

The function space U(?) assures well-defined operators. As
usual, L, denotes the space of square integrable functions.
Using these definitions, it is possible to write down aweak for-
mula, also known as the equivalent wave eguation. A solution
is given by an element « € U, which satisfies the boundary
conditions (15) and the equation

Voe U®: (v]Au) — 32 (v|Bu) — v*(v|Cu) = 0.  (26)
The vector function v is called the test function, similar to the
method of moments[19]. For further discussions, (26) isnamed
the weak formula of the original problem. Integration by parts
and the use of boundary conditions (15) to avoid partia deriva
tions of second order leads to the bilinear form of (10).

F(v,4) = A(v,u) — 2 B(v,u) — v?C(v,u) =0.  (27)

Its bilinear operators are given by

Alv,u) :<Vt X |-V ¥ 'U't> - <Vﬂ/z[77tt [Viu. + ) >
Bv,u) =(v:|e..u.) — (vilenu)
C(v,u) =<71t[77tt Vi, + ut]>

In order to get a solution that satisfies the boundary conditions,
it is sufficient to restrict the test functions and the solutions to
be members of the functions space

U,()l) ={uluel], V,xuwe€lL3 Vu.c€lLj,

zoXxu=0, ondlp}t (28)
because the boundary condition (15b) is a natural condition of
(27).

Now, an additional integration of the bilinear form (27) by
parts and a renaming of the quantities (v — v andv — u™)
leads to an equation, which defines the adjoint eigenvalue

problem
VoeU®: (AtuTlv) — p2(BTut|v) + 2 (Crutv) =0
= [At — BBt — y2Ct]ut =0.
(29)
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The corresponding matrix differential operators are given by

At — (VexqlL[Vex 1] iV,
| o” V. -nﬁVt
= 0
BY = Ot% —el
r H
+ _ N 0
CT = _—Vﬂ?f{ 0} (30)

During integration by parts, the following equations were used
to suppress line integrals:

ng x ut =0, on o p (31a)
Vt X ’U,?— =0

IQn. 31b

no i [v*2uf +Vul] =07 on oy (310)

These eguations are the boundary conditions of the adjoint
problem. The adjoint matrix differential operatorsand boundary
conditions are essentially the same as those from (14) and (16),
however, al material quantities are complex conjugated and
transposed. Therefore, the solution of the adjoint wave equation
uT is a solution, which belongs to a waveguide containing
complex conjugated and transposed material tensors.

D. Smplifications for Symmetric Materials

In cases of simple materials, the adjoint solution ™ isstrictly
related to the original solution «. To be uniquein further discus-
sions, u., denotes the solution of the original problem belonging
to the eigenvalue ~, and 'u,j/' isthe adjoint solution belonging to
the eigenvalue v*. However, the derivation of the adjoint wave
equation implies the existence of a corresponding adjoint solu-
tion u}. towu,.

If a waveguide with symmetric, but complex media (e, =
el and u, = wpl) is supposed, the adjoint operators can be
expressed by means of the original operators

At = A Bt =B Ct=C".
Accordingly, it is possible to write down the adjoint solution in
terms of the original solution

[AT = B3B8t —y?Ct]ut. =

[A - BB — ’yQC] uj/'f =0 = 'u,j/i =l

(32
Thus, it is sufficient to solve for one problem since the solution
of the other is simply its complex conjugated counterpart.

In case of lossless media (e, = €2 and p,. = pl), the oper-
ators are self-adjoint in the sense of the inner product
ct=cC.

AT=4 BT =B

Considering the adjoint problem, the following rel ation appears:

[A* — @2B* —2C*] ut. =0

[A— 3B —v**Clull =0 = ut =u,.. (39
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It can be concluded that a solution for the original problem with
~¥* exist, if v isavalid propagation constant. Starting from the
original equation

[A— BB —~°C]u, =0

[AT = B3BT =’ Ctuy, =0 ul =u,  (34)
shows that a solution always exist for the adjoint waveguide
with an eigenvalue ~ if v* isavalid propagation constant for the
adjoint problem. In conclusion for lossless waveguides, for both
problems, apair of complex conjugate propagation constants (v
and v*) always exist. Real eigenvalues 2 are not guaranteed
(see, e.g., Fig. 6). However, if 42 isreal, the following relations
occur [20]:

R —
'u.w —’U,,y = Uy = Uy

(39)

E. Bi-Orthogonality Relations

For waveguides with nonsymmetric transversally anisotropic
materials, the space of the original and adjoint solutions are both
complete [20], but neither is a set of orthogonal functions. To-
gether they form a set of bi-orthogonal functions, which will
be shown in this section. To this end, the physical solutions of
the original problem u; with the propagation constant ~y;, and
the physical solutions of the adjoint problem w;t with v asthe
propagation constant are considered. Due to the completeness
of both spaces, they can be used mutually as test functions.

The adjoint and original solutions are taken from the same
weak formula (26) and can be written as follows:

A('u,;':,'u,k) — [3§B(uji,uk) :’yzC ('u,;t,'u,k) = ’yiQC ('u,;t,'u,k) .
(36)

A subtraction of the left-hand sides results into the bi-orthogo-
nality relation between the original and adjoint solution

(v —7F) Cluf m) =0 (37
which can a'so be written in terms of the operator C
2 # 42 Cluf ) = (u)|Cup) = 0. (38)

Using thedefinition of C, abi-orthogonality relation isobtained,
which is close to the well-known power-like orthogonality rela-
tion [20]

3 Ak (b lew) = [ a0 o xufiJae =0
Q

Ve =y [ (ke + Viuzi) X 20]. (39)
Thevector function v,  representsafield, whichisproportional
to the magnetic field. Due to the squaresin the propagation con-
stants in (38), this relation does not distinguish between dif-
ferent propagation directions. The information about the prop-
agation direction is shifted to the inverse transformation (9) or
(22).
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Now, the results from Section |1-D can be used to obtain sim-
pler forms of this equation. If waveguides with complex, but
symmetric material tensors are considered, (32) can be used to
point out an orthogonality relation in terms of the original solu-
tions

v2 £ 42 (up |Cuy) = // Zo - [Uer X U ;] dQ2 =0 (40)
Q
or in terms of the adjoint solutions

//zo vtktxun}dﬁ 0

”t ke "7tt [('”'t ko +Vt“4 ko ) x ZO} .
(41)

Ve # Vs (u|Cul)

Therefore, both solutions are themselves orthogonal with re-
spect to the time-varying power flow.
In case of lossless materials, relation (39) is simplified to

ﬁ#v&@wﬁm»zf/my@mxumpazo (42)
Q

for the original and to

i Ao twtlow) = [[ 20 [of x ufi =0
Q
v;':k =ql [(uj’k +Vtu';k> X zo} (43)

for theadjoint solutions. I n other words, both setsarethemselves
orthogonal with respect to the time-averages power flow.

Although at the beginning of this section arestriction to phys-
ical solutions has been done, it is interesting to know what the
role of the nonphysical solutionswill bein thisoccasion. If (21)
is considered, it can be seen that both sets of nonphysical so-
lutions, i.e., original and adjoint, are orthogonal to all other so-
lutions. Equation (39) becomes senseless for nonphysical so-
lutions. Using these solutions as test functions, the following
well-known equations appear:

(u,|[AY — B2B* — *QB+] ut) =0
<¢)5[Vt Ett’u't - 544u4> 0 (443.)
(ul|[A - BB — v*B]u) =0

= (07 IV - vy — 7ezzuz) =0. (44b)

However, it isirony of fate that the nonphysical solutions guar-
antee the source freeness of the physical solutions in a weak
sense. Note that this equation is also true if the solutions are ex-
pressed via basis functions, for which (18) remains valid. Ob-
vioudly, for these basis functions, the so-called inclusion condi-
tion isonly true if the dimension of the spanned function space
isinfinite [27], [28].

I1l. APPLYING THE FEM

A. Matrix Eigenvalue Equation

Both weak formulations, i.e., original and adjoint, have the
same bilinear form (27), which contains only partial derivations
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of first order. In order to solve (27) numericaly, the function
space Ug) isreplaced by a subspace of finite dimension N
Uy = Span{wy, ..., wy} C U (45)
w, is called a basis function. For the original and adjoint
problem, the same function space is used (Galerkin's proce-
dure) as follows:
u~x Wz u"~Wzt W={w,. . wn}. (46
Thevectorsz = {z1,...,ax}" andz™ = {xf,...,x}}T
are the complex valued unknown degrees of freedom.
I nserting these approximations into the bilinear form (27)
2 e CV: F(WzT Wx)=0
and using the bilinearity of the operators alows withdrawing of
the unknown vectors
TTA - BB —+*Clz =0. (47)
Thus, the numerical solutions of the origina and adjoint
problem are simply the complex conjugated left and right
eigenvectors of the linear eigenvalue equation (47). All ma
trices can be computed analytical as follows:
A=AW, W) B=B(W, W) C=C(W,W). (48)
Notethat the nonsymmetric operators A and C' of (27) havelead
to nonsymmetric matrices A and C.

B. Approximation of Nonphysical Solutions

TCFEs have been successfully applied to suppress nonphys-
ical solutions (see, e.g., [5]-8]). However, explanations of how
these TCFESs suppress these solutions are often limited to zero
frequency and, thus, the spurious modes are often called the dc
modes of the problem. In this section, the understanding of the
occurrence of these nonphysical sol ut| ons will beimproved via
the deduction of aproper FE spacel N fromthebilinear form.
It will be shown that the choice of basisfunctionsisalsoi impor-
tant for the absence of the nonzero frequency spurious modes.

L et an approximation of a nonphysical solution be given by

o 0,7 €C: @ty & [Vy — o] s € Uy (49)

For this problem, the bilinear eigenvalue problem (27) is con-

sidered for an unchanged propagation constant v = 1 with the
eigenvalue 5y

A(a®,a,)

- C(’a’—'—aﬂs) = /336('&'-'—’77'9) (50)

In this equation, &t € U,(3 )1\ is an approximation of the adjoint
solution. Each linear combination of adjoint solutionsisalso an
element of / 1(3 )1\ Therefore, a specia function will be chosen
asfollows:

at =, — 20t € Upy. (51)
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Using solutions of this type in (50) as test functions and as-
suming positive definite material tensors, the left-hand side of
(50) can be written as

0 <A(wt, ) — Cla’, u,)
:Svtas,z + 'a's,t['rltt (Vtas,z + 'a's,t)>

>0
+ <Vt X i"s,t[nzzvt X as,t) .

~

>0

For this special case, 5y = 0 can only be an eigenvalue if both
terms vanish. Otherwise, the approximation of the nonphysical
solution %, will appear as a spurious solution with 5, > 0. In
order to shift this spurious solution back to 5, = 0, a vector
function space U ,()I)N is needed, which is able to represent gra-
dients of scalar functionsin a pointwise sense over the whole
waveguide domain £2.

Vt X 17,5 =0A 'Tj,m = —Vtuz7s

= @y = [V, — 20] 5 € UY)y. (52)

While doing this, the approximation of the nonphysical solution
is moved to the approximation of the scalar function ¢, as fol-
lows:

U, ~u, — ¢~>S P, (53)
Typically, in the FE approximation, ¢, is a member of a space
of piecewise continuous polynomials of nth-order P,,(£2). As
noted, (15b) and (16b) are either natural boundary or natural
continuity conditions. Thus, only (15a) and (16a) have to be
ensured viathe basis functions w; at inner or outer boundaries.
Consequently, these equations lead to tangential continuity
of the transversal components and continuity of the »-com-
ponents. Any further continuity restriction of the transversal
components leads to an increased continuity condition of the
z-component, e.g., the continuity of the normal component (for
an isotropic, homogeneous waveguide) forces a continuously
derivable z-component. As known from [8], thisis hot possible
in an arbitrary FE mesh. Since the continuity of the normal
component is assured via the bilinear form in aweak sense, all
continuity conditions are taken into account [9].

However, (52) will also lead to a proper approximation of the
other set of nonphysical solutions[see (22) and (23)1. Theinner
product of &, with any possible function from U,(j1 v vanishes
identically. ’

Vat e Uy (at)Ca,) = Cat,a,) =0.  (54)

Thisistrue vice versafor the adjoint nonphysical solution

VaeUply: (af|ca) = C(af,a) = 0. (55)
Thus, (52) assures propagation constants v — oo for nonphys-
ical solutions of the original and adjoint problem.
Itisobviousthat therelationsfor Section I1-E will also be sat-
isfied by the discretized problem. In [29], it has been discussed
that, using covariant projection elements or edge elements, the
physical solution will be orthogonal to all irrotational functions.
This so-called inclusion condition has been proven in [21] to
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Fig. 2. Internal boundary and local transformation into master element 2.
an
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y2n+1
an
Ysoa .
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b " 0
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y3n o o— —o y*‘
~ ~n ~n o an
0" y! ) Y X, x,

Fig. 3. Boundary and internal interpolation points.

be sufficient, but not necessary. Neither the edge, nor covariant
projection elementsfulfill theinclusion condition. It can be seen
from (44) that thisconditionisto strong with respect to the order
of scalar polynomials.

C. FE Basis Functions of nth Order

For the FE approach, the waveguide domain isdivided into a
number of nonoverlapping triangles §2; as follows:

M
Q=)o Ak#i QN = {0}

=1

(56)

Assuming tangential continuity between two FEs (seeFig. 3),
the main focus in this section is the deduction of a polynomial
basisfor &. Each 2; will betransformed into the master element
Qg via

i (57)
i =F;(0)
zy =Fi(%o)
5 =F(go)- (58)

Here, 4 depicts the transformed vectorial function, " = [z, 1]
and 7" = [, 4] are the vectors in the global and transformed
system, thetriangle pointsare given by z; ,and Zo and g, arethe
unit vectorsin the z and 4 directions (see Fig. 2). Using these
definitions, it can be shown that the curl always vanishesin both
coordinate systems

@'t X ’0,57t =det szt X 1157t =0
= 'a's,t :Vt(z)s A (z)s ~ as,z~

Therefore, all the following discussions are restricted to €.
Furthermore, with the space of nth-order polynomials P,,(€),
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(52) can be used to define an FE function space for n > 1 as
follows:
U: () =

{U,TJ € Pn 1(Q0) U% € P (Qo)} (59)

Due to the tangential continuity, al gradients are approximated
globally with an exact vanishing curl in €2. To simplify the im-
plementation of the FEM, it is useful to point out interpolation
conditions in order to obtain global basis functions of 1/2({).
Therefore, each local basis function is written as a linear com-
bination of vector and scalar polynomialsinside €2, asfollows:

n—1 k n k
" sh—lal - ak—lAl
Wy ; = E E G Y Wy = E E di

k=0 [=0 k=0 1=0

(60)
Then, = n(n + 1) coefficient of the ith transversal local basis
function¢; 1, € C? andthen. = (n+1)(n+2)/2 coefficients
of thelongitudinal local basisfunctionsd; x; € C arecaculated
by means of the following moments:

A — 1 _ 'L c [1,7’Lt]
to wt ) (yj ![)Q _6117 {J c [1’371] (61&)
1€ [1,7’Lt]
//“0 qj wt ZdQ 61]7 {j c [371 + 17 nt] (61b)
W, i (£]) =645, i,7€{l,n.}. (61c)

¥ denote the Lagrange interpolation points and the vectors tk
are the tangentia vectors belonging to 3n different boundary
interpolation points 7' (see Fig. 3). The linear independent
vector polynomlaISqJ € P2_, arenecessary to assurethelinear
independency of the FE basis functions. Previoudy, n; linear
matrix systems of R™t*"t and n_ linear matrix systems of
R™=*™= have to be solved only once to calculate the unknown
coefficients of the basis functions 4, ; and w. ;. Forn < 2 and
Q € R?, the moments (61) are those presented in [22] and [23].
Basis functions that span U (£2) withn = {1, 2} have aready
been used successfully in [10], [11], and [13].

Up to now, everything corresponds to an exact calculation of
the propagation constants of the nonphysical solutions. Consid-
ering (52), one can seethat » additional local basisfunctions p;’
exist, which are linear independent under the curl-operator

1 P i i
20 Vexpl = — gt =

2
\ gritipiet .
U, (o) =} pr = { i }, te{l,...,n} ;.
(62)

Here, U*(Q) isthe space of homogeneous vector polynomials
of nth order. Note that these additional degrees of freedom will
improve the approximation of the physical solutions, keeping
the nonphysical solutions unchanged. With (62), (59) is com-
pleted to

Un(S20) = Uy (S20) @ Uy (o). (63)
This space |eads to complete polynomials of order n — 1 inthe
space of the curl-operator for all three components. Since both
FE spacesl/,,(€o) and I/2 () deliver the same number of non-

physical solutions, a different rate of convergence is expected.
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Fig. 4. Logarithm of the relative error (interpolated values) as a function of
degrees of freedom N for the different FE spaces U; ( ), Us (-—-), and
U, (- - -), empty rectangular waveguide with @ x 2a at 3qa = 5.

In order to obtain aset of local basisfunctionsof U,,(€2o), the
left-hand-side equation of (60) has been modified to

n—1 k

wtz _chbklgk lnl+zhzkpk

k=0 1=0

(64)

Here, h;; € C are the additional degrees of freedom, which
increase the number of transversal unknowns in (61) to n, =
n(n + 2) (see[8]). Basis functions, which span 1/,,(Q9) with
first and second order, have been used by many authors[5], [14],
[24].

The incompleteness of U (o), however, leads to a unsatis-
fied rate of convergence, strongly depending on the considered
problem. To show this, an empty rectangular waveguide with
dimension a x 2a at the normalized frequency Fga = 5 has
been considered. Fig. 4 contains the approximation error for the
TE;; and TMy; modes for the first three FE function spaces.

For both modes (TE;; and TMy;), the rate of convergence
for FEs spanning the spaces Us isaways higher than those from
/1. In comparison, therate of convergence of the U3 isdifferent
for TE;; and TM;; modes. Though elementswith higher order
have been used, the rate of convergence for the TE;; mode is
even worse than the rate from Uy . The reason for thisisthe un-
satisfied natural boundary condition of the bilinear form. This
condition forces H_. to be continuous over the waveguide do-
main in aweak sense. However, thisis only insufficiently pos-
sible because H, is constant inside each §2; for U3. Thus, for
all kind of waveguide investigations with TE-like fields, thein-
complete space U;? seems to be less attractive.

D. Numerical Solution of the Eigenvalue Problem

Usually, in the investigation of waveguide structures with the
FEM, we are interested in some eigenvalues and eigenvectors
i & N, close to a given complex number s at a given fre-
guency. To speed up the computation time, the shifted and in-
verted problem is being solved as follows:

rx=8"1Czx 7zt =85"HCHgT. (65)
S = A — BIB — sC denotes the shifted matrix, and v =
V71 + s isthe applied eigenvalue transformation.
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The Lanczos algorithm from [5] has been proven to solve
eigenvalue problemswith symmetric operatorsefficiently. Inthe
following, this algorithm is generalized to handle the nonsym-
metric matrices of (47).

The basic idea of the Lanczos agorithm is the itera
tive construction of the matrices @, = J[g{,---.¢;] and
QF = [qf,....qf], which transform the matrix C into a
tridiagonal matrix T'; € C***.

QHcq, =T.. (66)
The column vectors g;, and g of Q; and Q; are assumed to be
bi-orthogonal with respect to

1<kI<N:¢f"Sq=6u, lal=1 (67

Consequently, the transformation (66) leads to ordinary eigen-
value systems of the original and adjoint problem of dimension

1 < N asfollows:
Ty, =Ty, — o~ Quy;
H
Tyf ~Tyt — ot = Qfyf. (68)

The tridiagonal structure of 7, allows an iterative process to
calculate the new vectors g; ; and g;f,; from the previous vec-
tors ¢; and ¢;" as follows:

(69)
(70)

tit1,i5¢,41 =Cq; — ti,:5q; — ti—1,:5¢;_4
H H H H
thiaS g, =Clqf —t7,8"q —t7,_,S"qf .

2,0—1

These equations are solved viaa sparse LU decomposition. Due
to the decomposition, the solution of the transposed system and
the new set of vectors ¢, ; and ¢;f,, are obtained with no ad-
ditional computation time after the first LU decomposition. A
combinations of (67) with (69) and (70) define the coefficients
of the tridiagonal matrix

tii=q;"Cq tii=q"[Cq tiyi=q"Cq_,.

Each iteration leads to an enlargement of the matrix 7°;_; to T’;
with the entri%tm;, ti_177‘,, and t7‘,77‘,_1.

Theiteration is started with an arbitrary choice of initial vec-
tors, eg. ¢, = ¢ =[1,...,1]" /V/N.If m + 1 solutions are
desired, al new vectors ¢; and ¢;" are bi-orthogonalized with
the m previoudly calculated solutions

1<ji<m: q;"HCa:j =0 qHCHz;' =0. (71)

Similar to [5], therelation |y;t;+1 ;| < e inthedthiteration step
is checked for convergence. Here, ¥; isthe ith component of the
eigenvector corresponding to the largest eigenvalue and ¢ isthe
selected error tolerance.

T

IV. NUMERICAL RESULTS

In this section, numerical results of the presented method are
compared with other methods. All presented results form the
adjoint FEM are based on the function space U, so six hodal
degrees of freedom for the z-component and eight degrees of
freedom for the transversal components have been used.

A. Shielded Dielectric Image Line

The shielded dielectric image line of Fig. 5 is used to show
the stability of the algorithm with respect to the occurrence of
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Fig. 5. Geometry of the shielded image waveguide.

3 . | . | . |

/wﬁiﬂw
2

1

S|
<
6_
Y

175 P

Fig. 6. Normalized propagation and normalized attenuation constants 3/ 3o
and o/ 3, of the first six hybrid modes for the waveguide shown in Fig. 5 as
a function of normalized frequency w3,. @ = 2b, b = 1.144783w, w =
2.15625h, 61 = €g,62 = 9eg, and p1 = p12 = po. and - - -: presented
method, x and o: results from [26]. Degrees of freedomsare N = 1500.

complex waves. Although all material parameters are lossless
isotropi ¢ quantities, modes with complex propagation constant,
called complex waves, exist [25]. These complex waves occur
alwaysin pairswith conjugated complex propagation constants.
Fig. 6 shows the dependency of ~/3, on the normalized fre-
quency Gow for the first six modes. With growing frequency, a
degeneration of a pair of complex waves to two hybrid modes
EH,; and H E4; isobserved, which isin excellent agreement
with the results presented in [26]. No numerical instabilities
have occurred during the calculation at cutoff (v = 0) because
of (22) and (23). Note that the self-orthogonality of complex
waves with respect to the average power is automatically han-
dled because of the use of the corresponding adjoint solution
[see (42)].

B. Anisotropic Rectangular Waveguide

Next, the height of the dielectric image line will be increased
to h = b. Both materials are assumed to have the same tensors
S0 €] = €2 = E,€p

18.59 — j2.57 —3.88 4+ j1.03 0
—3.88+41.03 14.1—j1.39 0
0 0 11.86 — 50.8

€, =

72)
Fig. 7 showsthe normalized propagation and normalized attenu-
ation constants 3/, and «¢/ 3, for the first two modes as func-
tions of normalized frequency w3,. Good agreement with the
results presented in [13] is observed.
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Fig. 7. Normalized propagation and normalized attenuation constants 3/ 3,
and «r/ 3, for thefirst two modes as functions of the logarithm of the normalized
frequency w/, . €2 isdefined by (72). Geometry parametersare: b = 0.4454a,
w = 0.2a,and h = b. Results for homogeneous waveguide (¢, = €, from
(72), py = py = po): (presented method), x, and + (results from [13]).
With added ferrite [e. = ¢, and g, from (73)]: - - - and - — - (presented
method). Degrees of freedom are: N = 1700.
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Fig. 8. Geometry of the anisotropic shielded microstrip line.

Furthermore, the center area was replaced by aferrite with a
permeability and permittivity given by

0.875 —350.375 0
B, = | j0.375  0.875 0| po (73)
0 0 1

and 2 = £q, While the other materials are unchanged. A reduc-
tion of the normalized propagation constant can be observed for
the fundamental mode, while the second mode is less affected.
The symmetry of the materials is lost by adding this slab and
the orthogonality relation is neither given by (40), nor (42). The
need of the adjoint solutions for the algorithm showed in Sec-
tion 111-D is obvious.

C. Anisotropic Shielded Microstrip Line

The capability of the presented agorithm for microwave
structures is shown by considering a shielded microstrip line
with anisotropic materials (see Fig. 8). The permittivity of the
substrate is given by

€xo Ezy O
€1=|¢€sy ey 0 |(1—jtand)
0 0 ¢

Exn =€, COS> 0 + €. sin 0
€y =(cc — €,)sin 6 cos® 0
Eyy =€o sin? 6 + e, cos? 6

Ezz =€o-

— T —
By -

3 S5y 0 T
o ]
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[« 3 of 2 ,f:ﬁ B ‘ 000888 0.d —
. * N a 8 g
(<=8 . o i s 7 ] %
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Fig. 9. Normalized propagation (3/3,) and logarithm of normalized
attenuation constants (log,,(«/30)) of the first three modes as a function of
af3, for the waveguide shown in Fig. 8. Parametersare: a = 10w, w = 25.4t,
e = 11.4eg, 6, = 9.deq, g, = po, and o5tZ, = 2.58 - 1037, Results
for symmetric materials (¢ = 0,tané = 0, and p, = po): —, - - -, and
- — - (presented method), x, + (results from [13]). Results for nonsymmetric
materials[# = 7/4, tané = 0.05, and p,, from (73)]: 5—-=, S-- -2, and
& — & (presented method). Degrees of freedom are: N = 4200.

Fig. 9 showsthe normalized propagation and normalized attenu-
ation constant of thefirst threemodesasafunction of a3, for two
different materials. For alosslessani sotropic permittivity (6 = 0,
tané = 0) and vacuum permeability, the results of the adjoint
FEM areingood agreement withthose presentedin[13]. Inafur-
ther investigation, the crystal direction has been changed (¢ =
7/4) and losses are added (tan é = 0.05). The material above
the substrateisreplaced by aferritewith apermeability tensor g,
given in (73). Thus, the symmetry of the materialsislost. The
first mode is mostly affected by this modification (see Fig. 9).

V. CONCLUSIONS

An FEM has been presented, which is able to solve wave-
guides with nonsymmetric transversally anisotropic materials.
Therefore, ageneralized bilinear form has been deduced, which
has been solved for the original and adjoint problem. Bi-orthog-
onality for the original and adjoint solution has been shown for
genera transversally anisotropic materials. All nonphysical so-
Iutions of the new bilinear form have beenindicated analytically.
The nonphysical solutions of the new bilinear form have: 1)
an unspecified propagation constant for zero frequency or 2) a
propagation constant at infinity for nonzero frequencies. It has
been shown that the nonphysical sol utions guaranteethe absence
of sources for the physical solutionsin aweak sense. From the
bilinear form, an nth-order FE function space has been derived,
which explainsthe capability of all known tangential continuous
vectoria FEs. All eigenvalues of the approximated nonphysical
solutions are identical to their analytical counterparts.

For the numerical solution of the nonsymmetric algebraic
eigenvalue problem, a Lanczos algorithm has been generalized
to solve the original and adjoint problem with nearly no addi-
tional computation time. By means of simple, but critical ex-
amples, it has been shown that the method is suitable for the
investigation of waveguide structures with arbitrary reflection-
symmetric inhomogeneous material parameters, especially at or
close to cutoff.
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