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Adjoint High-Order Vectorial Finite Elements for
Nonsymmetric Transversally Anisotropic Waveguides

Volkmar Schulz

Abstract—In this paper, a vector finite-element method (FEM)
for the investigation of microwave and optical waveguides with ar-
bitrary cross section is presented. In particular, the FEM solves the
vector wave equation in the frequency domain for waveguides, con-
taining nonsymmetric transversally anisotropic (passive and ac-
tive) materials. Therefore, a bilinear form has been derived that is
solved for the original and adjoint wave equation. Bi-orthogonality,
relations of original and adjoint solutions for simpler materials, the
role of nonphysical solutions for both problems, and their proper
approximations are discussed in detail. Special focus has been set
on shifting the propagation constants of the nonphysical modes for
nonzero frequencies to infinity. Therefore, an excellent rate of con-
vergence for iterative solvers is observed. The occurrence of non-
physical solutions is shown. Different th-order basis functions are
systematically derived, which are identical to the well-known tan-
gential continuous finite elements. Both algebraic eigenvalue prob-
lems are solved via a generalized Lanczos algorithm, which solves
both eigenvalue problems efficiently. The capability of the FEM is
illustrated by critical examples.

Index Terms—Adjoint, anisotropic, bi-orthogonality, finite-
element method (FEM), Lanczos, microstrip, nonphysical, non-
symmetric, optical, spurious, tangential continuous, transversal,
vectorial wave equation, waveguide.

I. INTRODUCTION

THE increasing complexity of microwave and optical com-
ponents requires accurate numerical tools to predict wave-

guide parameters qualitatively and quantitatively. Today, many
numerical methods are known, which are able to handle dif-
ferent types of waveguide problems. Especially for microwave
structures, numerical methods have to be able to handle fields at
sharp edges [1], [2]. For optical components, very accurate pre-
dictions of fields and propagation constants are needed. Since
the optimization of waveguide components increases the com-
plexity of the cross sections and the applied material systems,
the finite-element method (FEM) represents one of the most
suitable methods for future investigations.

However, solving the vectorial wave equation with numerical
methods often leads to the occurrence of nonphysical or spu-
rious solutions. Unfortunately, first ideas of forcing the field
to be source-free by penalty methods only partially succeed
[3]. Other authors successfully used formulations only in the
transversal field components [4]. Over the last ten years, several
papers have been published, in which tangential continuous fi-
nite elements (TCFEs) successfully suppressed these nonphys-
ical solutions [5]–[8]. An additional advantage of these TCFEs
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is the possibility to handle fields at sharp perfect conductive or
dielectric edges [9]. These two features prepare the TCFE for
the analysis of all microstrip-like waveguides.

Most of the TCFE-based FEMs are limited to lossless or
complex, but symmetric transversally anisotropic materials [7],
[10]–[12]. In [13], a TCFE-based FEM is derived, which is able
to handle general lossy anisotropic media by increasing the di-
mension of the algebraic eigenvalue problem. In this paper, a
generalized bilinear form will be derived, which is able to in-
vestigate waveguides with arbitrarily complex (passive or ac-
tive) nonsymmetric transversally anisotropic materials. There-
fore, unlike other authors, the original and adjoint problem is
solved to generate a set of bi-orthogonal functions.

Different high-order TCFEs have been published [7],
[11]–[15]. Thus, this paper tries to improve the understanding
of the occurrence and the avoidance of nonphysical solutions.
In contrast to other authors [5], [8], [10], [15], [17], the
finite-element (FE) function space of th order will be directly
derived from the bilinear form itself. It will be shown that, in
case of unsuited basis functions, a nonphysical solution will
pollute the eigenvalue spectrum. A special focus will be set
to derive a bilinear form, in which all nonphysical solutions
for nonzero frequency appear at infinity. Important relations
between the physical, adjoint, and nonphysical solutions will be
deduced. The algebraic eigenvalue of the original and adjoint
problem will be obtained by using a generalized Lanczos
algorithm [5] and a sparse LU decomposition [16]. Excellent
rate of convergence is observed, even for calculations at or
close to cutoff frequencies.

II. FORMULATION

A. Governing Equations

We consider a passive or active anisotropic nonsymmetric mi-
crowave or optical waveguide with arbitrary limited cross sec-
tion (see Fig. 1). is the boundary of the
region . For the investigation of waveguides, the dependency
of the field quantities on the time and the axial coordinate is
assumed to be of the following form:

(1)

denotes the propagation constant with the atten-
uation and the phase constant . The propagation of electro-
magnetic energy in the -direction is described by the two linear
independent Maxwell’s equations

(2a)
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Fig. 1. Waveguide with arbitrary cross section.

(2b)

Here, is the transversal Nabla op-
erator and and are the relative permittivity and perme-
ability tensors with complex entries. , , and are the unit
vectors along the -, -, and -axis. denotes
the free-space wavenumber, is the angular frequency, and

is the free-space wave impedance. The scalar
quantities and are the permittivity and permeability of
vacuum, respectively. For unique solutions of (2), the following
boundary conditions are assumed:

on (3a)

on (3b)

Here, is the unit vector perpendicular to the boundary ,
pointing outside the region .

All materials are transversally anisotropic quantities, e.g.,

(4)

No additional restrictions have been made for the materials so
neither hermitic ( , ), nor symmetric (

, ) materials have been imposed. Waveguides con-
taining transversally anisotropic conductivity can be investi-
gated via

(5)

Here, denotes the previous permittivity tensor. Transversally
anisotropic materials are also known as reflection-symmetric
materials because are valid propagation constants [20]. Fur-
thermore, from (2a) and (2b), second-order vectorial wave equa-
tions for either the electric or magnetic field can be deduced.
Without any restriction, a formulation based on the electric field
is used

(6)

A formulation in the magnetic field is simply achieved by ex-
changing the quantities , , and with , , and .
Instead of using , the rearranged definition

(7)

is used to simplify the notation [14]. Thus, the vector wave equa-
tion is separated into a transversal and longitudinal part

(8a)

(8b)

For a typical calculation, the frequency is known, whereas
is the demanded eigenvalue. Thus, it is useful to transform (6)
with

(9)

into a linear eigenvalue equation [5] Transversal parts and the
longitudinal component of are indicated by the subscripts
and . An application of this transformation leads to a bilinear
eigenvalue problem in and

(10)

The three matrix operators are given by

(11)

Nevertheless, a different transformation can be used [18] as
follows:

(12)

which leads to a similar bilinear eigenvalue problem

(13)

is the solution and the new operators are given by

(14)

Relations and properties of both sets of operators will be dis-
cussed in Section II-B. For unique solutions of (10) and (13),
the boundary conditions (3) are transformed via (9) and (12) to
the following equations:

on (15a)

on (15b)

on (16a)

on (16b)

Here, and denote the boundaries to perfect electric
conductors (PECs) and perfect magnetic conductors (PMCs).
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B. Nonphysical Solution of the Vector Wave Equation

Before the application of any numerical method, the nonphys-
ical solutions of the wave (2) and (8) will be indicated. These
solutions exist because the set of (2) is only complete if
is assumed. The source-freeness of the fields is not necessary
guaranteed for . Consequently, the enlargement of the
solution space has already been done, considering (2) as a com-
plete set of equations.

It is easy to prove that any function that satisfies the
boundary condition of Maxwell’s equations given by

(17)

is a solution of the problem with an unspecified source distribu-
tion.

Thus, for the different transformations (9) or (12), two dif-
ferent sets of nonphysical solutions end up from (17) as follows:

(18)

Each nonphysical solution is a solution of a linear eigenvalue
problem, e.g.,

(19)

because of

Even for , there are nonphysical solutions in the con-
tinuous problem, which depend on the set of matrix operators
being used. These functions are solutions of the inverse eigen-
value problem, e.g.,

(20)

For , the possibility that a nonphysical solution occurs
is related to the definiteness of the operator

(21)

In case of the operators (11), the additional nonphysical solu-
tions are given by

(22)

Likewise, for the set of operators from (14), additional nonphys-
ical solutions can be pointed out as follows:

(23)

For , both eigenvalue problems have nonphysical so-
lutions at . It is obvious that no special procedure
is necessary for the numerical solution if we solve the eigen-
value equations at or close to , [5], [12]. However, the
price paid for are nonsymmetric operators, even for a simple
example of an empty rectangular waveguide. Equation (8b) can

be shifted to the operator by multiplication with , which
leads to quasi-symmetric matrix operators, e.g., [7], [14]. As a
result, the new operator become semidefinite and is
an eigenvalue for both problems, which belongs to an infinite
number of nonphysical solutions similar to (23). Therefore, con-
vergence problems of the numerical computation of propagation
constants close to are expected. Thus, numerical methods
based on (10) and (13) are considered to be more promising.

C. Adjoint Operators and Bilinear Form

For the application of Galerkin’s procedure, an inner product
and a function space is defined.

d (24)

(25)

The function space assures well-defined operators. As
usual, denotes the space of square integrable functions.
Using these definitions, it is possible to write down a weak for-
mula, also known as the equivalent wave equation. A solution
is given by an element , which satisfies the boundary
conditions (15) and the equation

(26)

The vector function is called the test function, similar to the
method of moments [19]. For further discussions, (26) is named
the weak formula of the original problem. Integration by parts
and the use of boundary conditions (15) to avoid partial deriva-
tions of second order leads to the bilinear form of (10).

(27)

Its bilinear operators are given by

In order to get a solution that satisfies the boundary conditions,
it is sufficient to restrict the test functions and the solutions to
be members of the functions space

on (28)

because the boundary condition (15b) is a natural condition of
(27).

Now, an additional integration of the bilinear form (27) by
parts and a renaming of the quantities ( and )
leads to an equation, which defines the adjoint eigenvalue
problem

(29)
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The corresponding matrix differential operators are given by

(30)

During integration by parts, the following equations were used
to suppress line integrals:

on (31a)

on (31b)

These equations are the boundary conditions of the adjoint
problem. The adjoint matrix differential operators and boundary
conditions are essentially the same as those from (14) and (16),
however, all material quantities are complex conjugated and
transposed. Therefore, the solution of the adjoint wave equation

is a solution, which belongs to a waveguide containing
complex conjugated and transposed material tensors.

D. Simplifications for Symmetric Materials

In cases of simple materials, the adjoint solution is strictly
related to the original solution . To be unique in further discus-
sions, denotes the solution of the original problem belonging
to the eigenvalue , and is the adjoint solution belonging to
the eigenvalue . However, the derivation of the adjoint wave
equation implies the existence of a corresponding adjoint solu-
tion to .

If a waveguide with symmetric, but complex media (
and ) is supposed, the adjoint operators can be

expressed by means of the original operators

Accordingly, it is possible to write down the adjoint solution in
terms of the original solution

(32)

Thus, it is sufficient to solve for one problem since the solution
of the other is simply its complex conjugated counterpart.

In case of lossless media ( and ), the oper-
ators are self-adjoint in the sense of the inner product

Considering the adjoint problem, the following relation appears:

(33)

It can be concluded that a solution for the original problem with
exist, if is a valid propagation constant. Starting from the

original equation

(34)

shows that a solution always exist for the adjoint waveguide
with an eigenvalue if is a valid propagation constant for the
adjoint problem. In conclusion for lossless waveguides, for both
problems, a pair of complex conjugate propagation constants (
and ) always exist. Real eigenvalues are not guaranteed
(see, e.g., Fig. 6). However, if is real, the following relations
occur [20]:

(35)

E. Bi-Orthogonality Relations

For waveguides with nonsymmetric transversally anisotropic
materials, the space of the original and adjoint solutions are both
complete [20], but neither is a set of orthogonal functions. To-
gether they form a set of bi-orthogonal functions, which will
be shown in this section. To this end, the physical solutions of
the original problem with the propagation constant and
the physical solutions of the adjoint problem with as the
propagation constant are considered. Due to the completeness
of both spaces, they can be used mutually as test functions.

The adjoint and original solutions are taken from the same
weak formula (26) and can be written as follows:

(36)

A subtraction of the left-hand sides results into the bi-orthogo-
nality relation between the original and adjoint solution

(37)

which can also be written in terms of the operator

(38)

Using the definition of , a bi-orthogonality relation is obtained,
which is close to the well-known power-like orthogonality rela-
tion [20]

(39)

The vector function represents a field, which is proportional
to the magnetic field. Due to the squares in the propagation con-
stants in (38), this relation does not distinguish between dif-
ferent propagation directions. The information about the prop-
agation direction is shifted to the inverse transformation (9) or
(12).
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Now, the results from Section II-D can be used to obtain sim-
pler forms of this equation. If waveguides with complex, but
symmetric material tensors are considered, (32) can be used to
point out an orthogonality relation in terms of the original solu-
tions

(40)

or in terms of the adjoint solutions

(41)

Therefore, both solutions are themselves orthogonal with re-
spect to the time-varying power flow.

In case of lossless materials, relation (39) is simplified to

(42)

for the original and to

(43)

for the adjoint solutions. In other words, both sets are themselves
orthogonal with respect to the time-averages power flow.

Although at the beginning of this section a restriction to phys-
ical solutions has been done, it is interesting to know what the
role of the nonphysical solutions will be in this occasion. If (21)
is considered, it can be seen that both sets of nonphysical so-
lutions, i.e., original and adjoint, are orthogonal to all other so-
lutions. Equation (39) becomes senseless for nonphysical so-
lutions. Using these solutions as test functions, the following
well-known equations appear:

(44a)

(44b)

However, it is irony of fate that the nonphysical solutions guar-
antee the source freeness of the physical solutions in a weak
sense. Note that this equation is also true if the solutions are ex-
pressed via basis functions, for which (18) remains valid. Ob-
viously, for these basis functions, the so-called inclusion condi-
tion is only true if the dimension of the spanned function space
is infinite [27], [28].

III. APPLYING THE FEM

A. Matrix Eigenvalue Equation

Both weak formulations, i.e., original and adjoint, have the
same bilinear form (27), which contains only partial derivations

of first order. In order to solve (27) numerically, the function
space is replaced by a subspace of finite dimension

Span (45)

is called a basis function. For the original and adjoint
problem, the same function space is used (Galerkin’s proce-
dure) as follows:

(46)

The vectors and
are the complex valued unknown degrees of freedom.

Inserting these approximations into the bilinear form (27)

and using the bilinearity of the operators allows withdrawing of
the unknown vectors

(47)

Thus, the numerical solutions of the original and adjoint
problem are simply the complex conjugated left and right
eigenvectors of the linear eigenvalue equation (47). All ma-
trices can be computed analytical as follows:

A B C (48)

Note that the nonsymmetric operators and of (27) have lead
to nonsymmetric matrices and .

B. Approximation of Nonphysical Solutions

TCFEs have been successfully applied to suppress nonphys-
ical solutions (see, e.g., [5]–[8]). However, explanations of how
these TCFEs suppress these solutions are often limited to zero
frequency and, thus, the spurious modes are often called the dc
modes of the problem. In this section, the understanding of the
occurrence of these nonphysical solutions will be improved via
the deduction of a proper FE space from the bilinear form.
It will be shown that the choice of basis functions is also impor-
tant for the absence of the nonzero frequency spurious modes.

Let an approximation of a nonphysical solution be given by

(49)

For this problem, the bilinear eigenvalue problem (27) is con-
sidered for an unchanged propagation constant with the
eigenvalue

(50)

In this equation, is an approximation of the adjoint
solution. Each linear combination of adjoint solutions is also an
element of . Therefore, a special function will be chosen
as follows:

(51)
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Using solutions of this type in (50) as test functions and as-
suming positive definite material tensors, the left-hand side of
(50) can be written as

For this special case, can only be an eigenvalue if both
terms vanish. Otherwise, the approximation of the nonphysical
solution will appear as a spurious solution with . In
order to shift this spurious solution back to , a vector
function space is needed, which is able to represent gra-
dients of scalar functions in a pointwise sense over the whole
waveguide domain .

(52)

While doing this, the approximation of the nonphysical solution
is moved to the approximation of the scalar function as fol-
lows:

(53)

Typically, in the FE approximation, is a member of a space
of piecewise continuous polynomials of th-order . As
noted, (15b) and (16b) are either natural boundary or natural
continuity conditions. Thus, only (15a) and (16a) have to be
ensured via the basis functions at inner or outer boundaries.
Consequently, these equations lead to tangential continuity
of the transversal components and continuity of the -com-
ponents. Any further continuity restriction of the transversal
components leads to an increased continuity condition of the

-component, e.g., the continuity of the normal component (for
an isotropic, homogeneous waveguide) forces a continuously
derivable -component. As known from [8], this is not possible
in an arbitrary FE mesh. Since the continuity of the normal
component is assured via the bilinear form in a weak sense, all
continuity conditions are taken into account [9].

However, (52) will also lead to a proper approximation of the
other set of nonphysical solutions [see (22) and (23)]. The inner
product of with any possible function from vanishes
identically.

(54)

This is true vice versa for the adjoint nonphysical solution

(55)

Thus, (52) assures propagation constants for nonphys-
ical solutions of the original and adjoint problem.

It is obvious that the relations for Section II-E will also be sat-
isfied by the discretized problem. In [29], it has been discussed
that, using covariant projection elements or edge elements, the
physical solution will be orthogonal to all irrotational functions.
This so-called inclusion condition has been proven in [21] to

Fig. 2. Internal boundary and local transformation into master element 
 .

Fig. 3. Boundary and internal interpolation points.

be sufficient, but not necessary. Neither the edge, nor covariant
projection elements fulfill the inclusion condition. It can be seen
from (44) that this condition is to strong with respect to the order
of scalar polynomials.

C. FE Basis Functions of th Order

For the FE approach, the waveguide domain is divided into a
number of nonoverlapping triangles as follows:

(56)

Assuming tangential continuity between two FEs (see Fig. 3),
the main focus in this section is the deduction of a polynomial
basis for . Each will be transformed into the master element

via

(57)

(58)

Here, depicts the transformed vectorial function,
and are the vectors in the global and transformed
system, the triangle points are given by , and and are the
unit vectors in the and directions (see Fig. 2). Using these
definitions, it can be shown that the curl always vanishes in both
coordinate systems

Therefore, all the following discussions are restricted to .
Furthermore, with the space of th-order polynomials ,
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(52) can be used to define an FE function space for as
follows:

(59)

Due to the tangential continuity, all gradients are approximated
globally with an exact vanishing curl in . To simplify the im-
plementation of the FEM, it is useful to point out interpolation
conditions in order to obtain global basis functions of .
Therefore, each local basis function is written as a linear com-
bination of vector and scalar polynomials inside as follows:

(60)
The coefficient of the th transversal local basis
function and the coefficients
of the longitudinal local basis functions are calculated
by means of the following moments:

(61a)

(61b)

(61c)

denote the Lagrange interpolation points and the vectors
are the tangential vectors belonging to different boundary
interpolation points (see Fig. 3). The linear independent
vector polynomials are necessary to assure the linear
independency of the FE basis functions. Previously, linear
matrix systems of and linear matrix systems of

have to be solved only once to calculate the unknown
coefficients of the basis functions and . For and

, the moments (61) are those presented in [22] and [23].
Basis functions that span with have already
been used successfully in [10], [11], and [13].

Up to now, everything corresponds to an exact calculation of
the propagation constants of the nonphysical solutions. Consid-
ering (52), one can see that additional local basis functions
exist, which are linear independent under the curl-operator

(62)

Here, is the space of homogeneous vector polynomials
of th order. Note that these additional degrees of freedom will
improve the approximation of the physical solutions, keeping
the nonphysical solutions unchanged. With (62), (59) is com-
pleted to

(63)

This space leads to complete polynomials of order in the
space of the curl-operator for all three components. Since both
FE spaces and deliver the same number of non-
physical solutions, a different rate of convergence is expected.

Fig. 4. Logarithm of the relative error (interpolated values) as a function of
degrees of freedom N for the different FE spaces U (——), U (- — -), and
U (- - -), empty rectangular waveguide with a� 2a at � a = 5.

In order to obtain a set of local basis functions of , the
left-hand-side equation of (60) has been modified to

(64)

Here, are the additional degrees of freedom, which
increase the number of transversal unknowns in (61) to

(see [8]). Basis functions, which span with
first and second order, have been used by many authors [5], [14],
[24].

The incompleteness of , however, leads to a unsatis-
fied rate of convergence, strongly depending on the considered
problem. To show this, an empty rectangular waveguide with
dimension at the normalized frequency has
been considered. Fig. 4 contains the approximation error for the

and modes for the first three FE function spaces.
For both modes ( and ), the rate of convergence

for FEs spanning the spaces is always higher than those from
. In comparison, the rate of convergence of the is different

for and modes. Though elements with higher order
have been used, the rate of convergence for the mode is
even worse than the rate from . The reason for this is the un-
satisfied natural boundary condition of the bilinear form. This
condition forces to be continuous over the waveguide do-
main in a weak sense. However, this is only insufficiently pos-
sible because is constant inside each for . Thus, for
all kind of waveguide investigations with TE-like fields, the in-
complete space seems to be less attractive.

D. Numerical Solution of the Eigenvalue Problem

Usually, in the investigation of waveguide structures with the
FEM, we are interested in some eigenvalues and eigenvectors

, close to a given complex number at a given fre-
quency. To speed up the computation time, the shifted and in-
verted problem is being solved as follows:

(65)

denotes the shifted matrix, and
is the applied eigenvalue transformation.
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The Lanczos algorithm from [5] has been proven to solve
eigenvalue problems with symmetric operators efficiently. In the
following, this algorithm is generalized to handle the nonsym-
metric matrices of (47).

The basic idea of the Lanczos algorithm is the itera-
tive construction of the matrices and

, which transform the matrix into a
tridiagonal matrix .

(66)

The column vectors and of and are assumed to be
bi-orthogonal with respect to

(67)

Consequently, the transformation (66) leads to ordinary eigen-
value systems of the original and adjoint problem of dimension

as follows:

(68)

The tridiagonal structure of allows an iterative process to
calculate the new vectors and from the previous vec-
tors and as follows:

(69)

(70)

These equations are solved via a sparse LU decomposition. Due
to the decomposition, the solution of the transposed system and
the new set of vectors and are obtained with no ad-
ditional computation time after the first LU decomposition. A
combinations of (67) with (69) and (70) define the coefficients
of the tridiagonal matrix

Each iteration leads to an enlargement of the matrix to
with the entries , , and .

The iteration is started with an arbitrary choice of initial vec-
tors, e.g., . If solutions are
desired, all new vectors and are bi-orthogonalized with
the previously calculated solutions

(71)

Similar to [5], the relation in the th iteration step
is checked for convergence. Here, is the th component of the
eigenvector corresponding to the largest eigenvalue and is the
selected error tolerance.

IV. NUMERICAL RESULTS

In this section, numerical results of the presented method are
compared with other methods. All presented results form the
adjoint FEM are based on the function space so six nodal
degrees of freedom for the -component and eight degrees of
freedom for the transversal components have been used.

A. Shielded Dielectric Image Line

The shielded dielectric image line of Fig. 5 is used to show
the stability of the algorithm with respect to the occurrence of

Fig. 5. Geometry of the shielded image waveguide.

Fig. 6. Normalized propagation and normalized attenuation constants �=�
and �=� of the first six hybrid modes for the waveguide shown in Fig. 5 as
a function of normalized frequency w� . a = 2b, b = 1:144783w, w =

2:15625h, " = " , " = 9" , and � = � = � . —— and - - -: presented
method,� and �: results from [26]. Degrees of freedoms are N = 1500.

complex waves. Although all material parameters are lossless
isotropic quantities, modes with complex propagation constant,
called complex waves, exist [25]. These complex waves occur
always in pairs with conjugated complex propagation constants.
Fig. 6 shows the dependency of on the normalized fre-
quency for the first six modes. With growing frequency, a
degeneration of a pair of complex waves to two hybrid modes

and is observed, which is in excellent agreement
with the results presented in [26]. No numerical instabilities
have occurred during the calculation at cutoff because
of (22) and (23). Note that the self-orthogonality of complex
waves with respect to the average power is automatically han-
dled because of the use of the corresponding adjoint solution
[see (42)].

B. Anisotropic Rectangular Waveguide

Next, the height of the dielectric image line will be increased
to . Both materials are assumed to have the same tensors
so

(72)
Fig. 7 shows the normalized propagation and normalized attenu-
ation constants and for the first two modes as func-
tions of normalized frequency . Good agreement with the
results presented in [13] is observed.
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Fig. 7. Normalized propagation and normalized attenuation constants �=�
and�=� for the first two modes as functions of the logarithm of the normalized
frequency w� . """ is defined by (72). Geometry parameters are: b = 0:4454a,
w = 0:2a, and h = b. Results for homogeneous waveguide (""" = """ from
(72), ��� = ��� = � ): —— (presented method),�, and + (results from [13]).
With added ferrite [""" = " and ��� from (73)]: - - - and - — - (presented
method). Degrees of freedom are: N = 1700.

Fig. 8. Geometry of the anisotropic shielded microstrip line.

Furthermore, the center area was replaced by a ferrite with a
permeability and permittivity given by

(73)

and , while the other materials are unchanged. A reduc-
tion of the normalized propagation constant can be observed for
the fundamental mode, while the second mode is less affected.
The symmetry of the materials is lost by adding this slab and
the orthogonality relation is neither given by (40), nor (42). The
need of the adjoint solutions for the algorithm showed in Sec-
tion III-D is obvious.

C. Anisotropic Shielded Microstrip Line

The capability of the presented algorithm for microwave
structures is shown by considering a shielded microstrip line
with anisotropic materials (see Fig. 8). The permittivity of the
substrate is given by

Fig. 9. Normalized propagation (�=� ) and logarithm of normalized
attenuation constants (log (�=� )) of the first three modes as a function of
a� for the waveguide shown in Fig. 8. Parameters are: a = 10w, w = 25:4t,
" = 11:4" , " = 9:4" , ��� = � , and � tZ = 2:58 � 10 �. Results
for symmetric materials (� = 0, tan � = 0, and ��� = � ): ——, - - -, and
- — - (presented method), �, + (results from [13]). Results for nonsymmetric
materials [� = �=4, tan � = 0:05, and ��� from (73)]: 	—-	, 	- - -	, and
	 — 	 (presented method). Degrees of freedom are: N = 4200.

Fig. 9 shows the normalized propagation and normalized attenu-
ation constant of the first three modes as a function of for two
different materials. For a lossless anisotropic permittivity ( ,

) and vacuum permeability, the results of the adjoint
FEM are in good agreement with those presented in [13]. In a fur-
ther investigation, the crystal direction has been changed

and losses are added . The material above
the substrate is replaced by a ferrite with a permeability tensor
given in (73). Thus, the symmetry of the materials is lost. The
first mode is mostly affected by this modification (see Fig. 9).

V. CONCLUSIONS

An FEM has been presented, which is able to solve wave-
guides with nonsymmetric transversally anisotropic materials.
Therefore, a generalized bilinear form has been deduced, which
has been solved for the original and adjoint problem. Bi-orthog-
onality for the original and adjoint solution has been shown for
general transversally anisotropic materials. All nonphysical so-
lutions of the new bilinear form have been indicated analytically.
The nonphysical solutions of the new bilinear form have: 1)
an unspecified propagation constant for zero frequency or 2) a
propagation constant at infinity for nonzero frequencies. It has
been shown that the nonphysical solutions guarantee the absence
of sources for the physical solutions in a weak sense. From the
bilinear form, an th-order FE function space has been derived,
which explains the capability of all known tangential continuous
vectorial FEs. All eigenvalues of the approximated nonphysical
solutions are identical to their analytical counterparts.

For the numerical solution of the nonsymmetric algebraic
eigenvalue problem, a Lanczos algorithm has been generalized
to solve the original and adjoint problem with nearly no addi-
tional computation time. By means of simple, but critical ex-
amples, it has been shown that the method is suitable for the
investigation of waveguide structures with arbitrary reflection-
symmetric inhomogeneous material parameters, especially at or
close to cutoff.
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